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Stress field around arbitrarily shaped cracks in two-dimensional elastic materials
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The calculation of the stress field around an arbitrarily shaped crack in an infinite two-dimensional elastic
medium is a mathematically daunting problem. With the exception of few exactly soluble crack shapes the
available results are based on either perturbative approaches or on combinations of analytic and numerical
techniques. We present here a general solution of this problem for any arbitrary crack. Along the way we
develop a method to compute the conformal map from the exterior of a circle to the exterior of a line of
arbitrary shape, offering it as a superior alternative to the classical Schwartz-Cristoffel transformation. Our
calculation results in an accurate estimate of the full stress field and in particular of the stress intensity factors
KI andKII and theT-stress which are essential in the theory of fracture.
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I. INTRODUCTION

The existence of a crack in a stressed elastic medium d
not necessarily mean that a catastrophic failure is in si
otherwise many home owners would be in a constant stat
panic. Indeed, one of the major objectives of the theory
fracture mechanics is to predict when the existence of a c
would necessarily lead to the failure of materials. A cruc
ingredient of such a prediction is the determination of
state of deformation of a given material in the presence
the said crack under the effect of a given external loadi
This calculation is not available for arbitrarily shaped crac
even in two-dimensional elastic media. To explain the di
culty consider for a moment an existing crack in an infin
two-dimensional medium. Under given load conditions t
displacement fieldu(r,t) is giving rise to the elastic strain
tensore i j :

e i j [
1

2 S ]ui

]xj
1

]uj

]xi
D . ~1!

In linear elasticity the stress tensor is related to the st
tensor by@1#

s i j 5
E

11n S n

122n
d i j (

k
ekk1e i j D , ~2!

whereE and n are the Young’s modulus and the Poisso
ratio, respectively. When the boundary conditions at infin
include both opening and shear modes~with respect to the
straight crack! the stress field near the tip of any crack ha
universal form@2#, i.e.,

s i j ~r ,w!5
KI

A2pr
S i j

I ~w!1
KII

A2pr
S i j

I I ~w!. ~3!

Here KI and KII are the ‘‘stress intensity factors’’ with re
spect to the opening and shear modes, whereasS i j

I (w) and
S i j

I I (w) are universal angular functions common to all co
figurations and loading conditions. Despite the simplicity
Eq. ~3! the calculation of the stress intensity factors is n
1063-651X/2004/69~2!/026127~7!/$22.50 69 0261
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simple. Their numerical value depends on the shape of
crack, its dynamical history, and on the far field bounda
conditions.

For astraightcrack the stress intensity factors are know
exactly @3,4#, i.e.,

KI5syy
` Apa, KII 5sxy

` Apa, ~4!

where 2a is the crack length ands i j
` is the uniform load at

infinity. The criterion for failure is then the famous Griffith
Irwin criterion @5#,

KI
21KII

2

E
5G, ~5!

whereG is the fracture energy. The physical meaning of E
~5! is that the crack will initiate~and may cause failure!
when the elastic energy flowing from the stress field in
bulk to the tip region is at least as large as the energy los
lengthening the crack~bond breaking or any other energ
cost involved!. In the case of the straight crack failure wi
occur, for a given level of the external load, at a critical cra
length.

For cracks of arbitrary shape we still expect both Eqs.~3!
and~5! to remain valid. The problem is then how to compu
the stress intensity factorsKI andKII when the crack isnot
straight. Indeed, a well-known paper by Cotterell and R
@6# offers such an analytic calculation for aslightly curved
crack in perturbation theory in the amount of deviation fro
the straight crack. Many other works developed alternat
hybrid numerical-analytical techniques like singular integ
equations based either on dislocation distribution or cr
‘‘opening displacement functions’’ and superposition me
ods@7#. A large body of research is devoted to direct nume
cal techniques like the finite element method@8#. In this pa-
per we offer a nonperturbative approach to the calculation
the full stress field of an arbitrarily shaped crack based o
conformal mapping technique. In particular, we will be ab
to estimate accurately the stress intensity factors and
other relevant quantities like theT-stress, a quantity to be
defined below@cf. Eq. ~40!#. In Sec. II we lay out the math
ematical problem. In Sec. III we present a solution based
©2004 The American Physical Society27-1
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BOUCHBINDER, MATHIESEN, AND PROCACCIA PHYSICAL REVIEW E69, 026127 ~2004!
the method of iterated conformal maps. This section inclu
also the general problem of finding the conformal map fr
the unit circle to a line of an arbitrary shape. The sect
culminates in the calculation of the stress intensity factors
Sec. IV we exemplify the method and compare it agai
exactly soluble cases. Section V offers a short summary
a discussion.

II. MATHEMATICAL FORMULATION

The theory of elastostatic fracture mechanics in bri
continuous media is based on the equilibrium equations
an isotropic elastic body@1#

]s i j

]xj
50. ~6!

For in-plane modes of fractures, i.e., under plane-stres
plane-strain conditions, one introduces the Airy stress po
tial U(x,y) such that

sxx5
]2U

]y2
; sxy52

]2U

]x]y
; syy5

]2U

]x2
. ~7!

Thus the set of Eq.~6!, after simple manipulations, translate
to a Bi-Laplace equation for the Airy stress potentialU(x,y)
@1#

DDU~x,y!50, ~8!

with the prescribed boundary conditions on the crack and
the external boundaries of the material. At this point
choose to focus on the case of uniform remote loadings
traction-free crack boundaries. This choice, although not
most general, is of great interest and will serve to elucid
our method. Other solutions may be obtained by superp
tion. Thus the boundary conditions at infinity, for the tw
in-plane symmetry modes of fracture, are presented as

sxx~`!50; syy~`!5s` ; sxy~`!50 mode I,
~9!

sxx~`!50; syy~`!50; sxy~`!5s` mode II.
~10!

In addition, the free boundary conditions on the crack
expressed as

sxn~s!5syn~s!50, ~11!

wheres is the arc-length parametrization of the crack boun
ary and the subscriptn denotes the outward normal directio

The solution of the Bi-Laplace equation can be written
terms oftwo analytic functionsf(z) andh(z) as

U~x,y!5Re@ z̄w~z!1h~z!#. ~12!

In terms of these two analytic functions, using Eq.~7!, the
stress components are given by
02612
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syy~x,y!5Re@2w8~z!1 z̄w9~z!1h9~z!#,

sxx~x,y!5Re@2w8~z!2 z̄w9~z!2h9~z!#,

sxy~x,y!5Im@ z̄w9~z!1h9~z!#. ~13!

In order to compute the full stress field one should first f
mulate the boundary conditions in terms of the analytic fu
tionsw(z) andh(z) and to remove the gauge freedom in E
~12!. The boundary conditions Eq.~11!, using Eq.~7!, can be
rewritten as@3#

]sF]U

]x
1 i

]U

]y G50. ~14!

Note that we do not have enough boundary conditions
determineU(x,y) uniquely. In fact we can allow in Eq.~12!
arbitrary transformations of the form

w→w1 iCz1g,

c→c1g̃, c[h8, ~15!

whereC is a real constant andg and g̃ are complex con-
stants. This provides five degrees of freedom in the definit
of the Airy potential. Two of these freedoms are removed
choosing the gauge in Eq.~14! according to

]U

]x
1 i

]U

]y
50, on the boundary. ~16!

It is important to stress that whatever the choice of the fi
freedoms, the stress tensor is unaffected; see@3# for an ex-
haustive discussion of this point. Computing Eq.~16! in
terms of Eq.~12! we arrive at the boundary condition

w~z!1zw8~z!1c~z!50. ~17!

To proceed we representw(z) and c(z) in Laurent expan-
sion form:

w~z!5w1z1w01w21 /z1w22 /z21•••,

c~z!5c1z1c01c21 /z1c22 /z21•••. ~18!

This form is in agreement with the boundary conditions
infinity that disallow higher order terms inz. One freedom is
now used to choosew1 to be real and two more freedom
will allow us later on to fixw0. Then, using the boundar
conditions~9! and ~10!, we find

w15
s`

4
; c15

s`

2
mode I,

w150; c15 is` mode II. ~19!

III. THE SOLUTION

As said above, the direct determination of the stress ten
for a given arbitrarily shaped crack is difficult. To overcom
the difficulty we perform an intermediate step of determini
the conformal map from the exterior of the unit circle to t
7-2
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STRESS FIELD AROUND ARBITRARILY SHAPED . . . PHYSICAL REVIEW E69, 026127 ~2004!
exterior of our given crack. Currently the best available a
proach for such a task is the Schwartz-Cristoffel transform
tion. Here we will present an alternative new approach
finding the wanted conformal transformation, given in ter
of a functional iteration of fundamental conformal maps. T
use of iterated conformal maps was pioneered by Hast
and Levitov@9#; it was subsequently turned into a powerf
tool for the study of fractal and fracture growth patterns@10–
16#. In the next section we describe how, given a cra
shape, to construct a conformal map from the complexv
plane to the physicalz plane such that the conformal mapz
5F(v) maps the exterior of the unit circle in thev plane to
the exterior of the crack in the physicalz plane, aftern di-
rected growth steps. We draw the reader’s attention to
fact that this method is more general than its application
this paper, and in fact we offer it as a superior method to
Schwartz-Cristoffel transformation, with hitherto undete
mined potential applications in a variety of two-dimension
contexts.

A. The conformal mapping

The essential building block in the present application,
in all the applications of the method of iterated conform
maps, is the fundamental mapfl,u that maps, the exterio
circle onto the unit circle with a semicircular bump of line
sizeAl which is centered at the pointeiu. This map reads
@9#

f0,l~w!5AwH ~11l!

2w
~11w!F11w

1wS 11
1

w2
2

2

w

12l

11l D 1/2G21J 1/2

, ~20!

fu,l~w!5eiuf0,l~e2 iuw!. ~21!

The inverse mappingfu50,l
21 is of the form

f0,l
215

lz2A11l~z221!

12~11l!z2
z. ~22!

By composing this map with itselfn times with a judicious
choice of series$uk%k51

n and $lk%n51
n we will construct

F (n)(v) that will map the exterior of the circle to the exte
rior of an arbitrary simply connected shape. To underst
how to choose the two series$uk%k51

n and $lk%n51
n consider

Fig. 1, and define the inverse mapv5x (n)(z). Assume now
that we already haveF (n21)(v) and therefore also its ana
lytic inversex (n21)(z) aftern21 growth steps, and we wan
to perform the next iteration. To constructF (n)(v) we ad-
vance our mapping in the direction of a pointz̃ in thez plane
by adding a bump in the direction ofw̃5x (n21)( z̃) in the w
plane. The mapF (n)(v) is obtained as follows:

F (n)~v!5F (n21)@fun ,ln
~v!#. ~23!

The value ofun is determined by
02612
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un5arg@x (n21)~ z̃!#. ~24!

The magnitude of the bumpln is determined by requiring
fixed size bumps in thez plane. This means that

ln5
l0

uF (n21)8~eiun!u2
. ~25!

We note here that it is not necessary in principle to ha
fixed size bumps in the physical domain. In fact, adapt
size bumps could lead to improvements in the precision
performance of our scheme. We consider here the fixed
scheme for the sake of simplicity, and we will show that t
accuracy obtained is sufficient for our purposes. Iterating
scheme described above we end up with a conformal m
that is written in terms of an iteration over the fundamen
maps~20!:

F (n)~w!5fu1 ,l1
+•••+ fun ,ln

~w!. ~26!

For the sake of newcomers to the art of iterated conform
maps we stress that this iterative structure is abnormal, in
sense that the order of iterates is inverted with respec
standard dynamical systems. On the other hand the inv
mapping follows a standard iterative scheme

x (n)~z!5fun ,ln

21 +•••+ fu1 ,l1

21 ~z!. ~27!

The algorithm is then described as follows; first we divi
the curve into segments separated by points$zi%. The spatial
extent of each segment is taken to be approximatelyAl0, in
order to match the size of the bumps in thez plane. Without
loss of generality we can take one of these points to be at
center of coordinates and to be our starting point. From

FIG. 1. Example of how to construct the conformal mappi
along a line, see text for details.
7-3
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BOUCHBINDER, MATHIESEN, AND PROCACCIA PHYSICAL REVIEW E69, 026127 ~2004!
starting point we now advance along the shape by mapp
the next pointzi on the curve according to the scheme d
scribed above.

B. Solution in terms of conformal mappings

The conformal mapF (n)(v) is constructed inn iterative
steps. For the discussion below we do not need then super-
script and will denote simplyF(v)[F (n)(v). This map is
univalent@10#, having the Laurent expansion form

F~v!5F1v1F01F21 /v1F22 /v21•••. ~28!

Any position z in the physical domain is mapped byx(z)
[F21(z) onto a positionv in the mathematical domain
This transformation does not immediately provide the so
tion, as the Bi-Laplacian operator, in contrast to the Lapl
ian operator, is not conformally invariant. Nevertheless,
conformal mapping method can be extended to n
Laplacian problems. We begin by writing our unknown fun
tions w(z) andc(z) in terms of the conformal map

w~z![w̃@x~z!#, c~z![c̃@x~z!#. ~29!

Using the Laurent form of the conformal map, Eq.~28!, the
linear term asv→` is determined by Eqs.~29!. We there-
fore write

w̃~v!5w1F1v1w̃21 /v1w̃22 /v21•••,

c̃~v!5c1F1v1c̃01c̃21 /v1c̃22 /v21•••, ~30!

where we used the last two freedoms to choosew0

52F0w1 such thatw̃050. The boundary condition~17! is
now read for the unit circle in thev plane. Denotinge
[eiu and

u~e![(
k51

`

w̃2k /ek, v~e![(
k50

`

c̃2k /ek, ~31!

we write

u~e!1
F~e!

F8~e!
u8~e!1v~e!5 f ~e!. ~32!

The function f (e) is a known function that contains all th
coefficients that were determined so far:

f ~e!52w1F1e2
F~e!

F8~e!
w1F12

c1F1

e
. ~33!

To solve the problem we need to compute the coefficientsw̃n

and c̃n . To this aim we first write@15#

F~e!

F8~e!
5(

2`

`

bie
i . ~34!

The functionf (e) has also an expansion of the form
02612
g
-

-
-
e
-

-

f ~e!5(
2`

`

f ie
i . ~35!

In the discussion below we assume that the coefficientsbi
and f i are known. In order to compute these coefficients
need to Fourier transform the functionF(e)/F8(e). This is
the most expensive step in our solution. One needs to c
fully evaluate the Fourier integrals between the branch c
Using the last two equations together with Eqs.~31! and~32!
we obtain

w̃2m2 (
k51

`

kb2m2k21w̃2k* 5 f 2m , m51,2, . . . , ~36!

c̃2m* 2 (
k51

`

kbm2k21w̃2k* 5 f m , m50,1,2, . . . . ~37!

These sets of linear equations are well posed. The co
cientsw̃2m can be calculated from Eq.~36! alone, and then
they can be used to determine the coefficientsc̃2m . This is
in fact a proof that Eq.~32! determines the functionsu(e)
and v(e) together. This fact had been proven with som
generality in@3#.

The calculation of the Laurent expansion form ofw̃(v)
and c̃(v) provides the solution of the problem in thev
plane. Still, one should express the derivatives ofw(z) and
h(z) in terms ofw̃(v) and c̃(v) and the inverse mapx(z)
to obtain the solution in the physicalz plane. This is straight-
forward and yields

w8~z!5w̃8@x~z!#x8~z!,

w9~z!5w̃9@x~z!#@x8~z!#21w̃8@x~z!#x9~z!,

h9~z!5c8~z!5c̃8@x~z!#x8~z!. ~38!

Upon substituting these relations into Eq.~13! one can cal-
culate thefull stress field for an arbitrarily shaped crack. T
expression of the stress field in terms of the inverse con
mal mapping is known for quite a long time although it
very limited as the conformal mapping and its inverse
rarely at hand. The central step of progress in this pape
the conjunction of the novel functional iterative scheme
obtaining the inverse conformal mapping with the know
result that expresses the stress field in terms of this inv
mapping.

C. The stress intensity factors and the T-stress

Linear elasticity fracture mechanics, under small sc
yielding, has no intrinsic length scale. Accordingly the stre
intensity factors are the most important quantities that ch
acterize the universal near-tip fields. At this point we expla
how to calculate the stress intensity factors from our so
tion.

In principle, the calculation follows directly from the so
lution in terms of the conformal map as described abo
7-4
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Previous authors derived the following expression for
complex combination~of the real! stress intensity factors
@17#:

KI2 iK II 52A p

eid jF9~v j !
w̃8~v j !, ~39!

wherev j is the position of the tip in thev plane, andd j is
the argument of the tip positionzj in the physical plane. This
result, although exact, cannot be used to obtain accurate
timates of the stress intensity factors in our method. Since
construct our crack from a succession of little bumps,
crack tip is not infinitely sharp. Therefore we cannot base
calculation of the stress intensity factors on the precise c
dinates of the tip. Rather, we need to exploit our knowled
of the stress field for a substantial region around the tip.
thus consider the stress field in the region of the tip, a
write the components along the tangent to the crack at the
@2#

sww~r ,0!5
KI

A2pr
1bwwAr ,

s rw~r ,0!5
KII

A2pr
1brwAr ,

s rr ~r ,0!5
KI

A2pr
1T1brrAr . ~40!

We have added terms ofO(Ar ) to the leading terms, and in
addition we took into account theT-stress contribution to the
purely radial components rr . It is crucial to note that there
are no otherO(1) terms in the first two lines of Eq.~40!. We
did not need to consider explicitly any higherO(r 3/2) terms.
In order to extract the stress intensity factors from the
field distributions we fit our solution near the tip to the for
given by Eq.~40!. We thus obtain not only the stress inte
sity factors but also the coefficient of the subleading term
We note that the so-calledT-stress has an important role
fracture theory~cf. @2,4,6#!.

IV. DEMONSTRATIONS OF THE METHOD

In this section we demonstrate our method for two~of the
very rare! exactly soluble geometries. There are many n
merically solved problems in the literature that one can
for comparison, but our aim here is to exemplify the ess
tials of our approach. We will see that the method works v
well and we propose that it can be used for arbitrary cr
shapes as well.

A. The straight crack

The problem of a crack of length 2a in an infinite domain,
subjected to a remote uniaxial loadsyy5s` and traction-
free crack faces, is considered as the canonical problem
the theory of linear elasticity fracture mechanics. The res
ing stress field is known, and is given by@4#:
02612
e

es-
e
r
r
r-
e
e
d
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s.

-
e
-
y
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syy~x,y!5s` ReF z

Az22a2
1

iya2

~z22a2!3/2G ,

sxx~x,y!5s` ReF z

Az22a2
2

iya2

~z22a2!3/2G2s`, ~41!

sxy~x,y!52s` ReF ya2

~z22a2!3/2G ,

wherez5x1 iy and the crack is represented by a branch
along2a,x,a, y50.

We applied our general solution to the straight crack pr
lem. We constructed the conformal mapping using our fu
tional iteration scheme although the exact conformal m
ping is known to be

F~v!5
a

2 S v1
1

v D . ~42!

Figure 2 compares our calculation ofsyy along thex axis
with the exact result. The deviation near the tip of the cra
is expected as in our solution the crack tip is not infinite
sharp but has a finite radius of curvature controlled by
parameterl in Eq. ~20!. Decreasing the value ofl, we can
obtain more accurate results. Note that real crack tipsdo
have a finite radius of curvature, so that our method can
even more appropriate; the idealization of represent
cracks by mathematical branch cuts is no longer a neces
simplification.

B. The circular arc crack

The analytic methods developed by Muskhelishvili@3#
lead to the solution of various problems concerned with c

FIG. 2. The stress tensor componentsyy for a straight crack
with a5200. The component is evaluated fory50 and a distancer

away from the tip atx5200. The numerical estimatess̃yy ap-
proaches the analytical result~the left most line! as we decrease th
linear size of the bumpsAl051.0,0.9,0.8, . . .,0.3. The inset shows
the relative error.
7-5
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BOUCHBINDER, MATHIESEN, AND PROCACCIA PHYSICAL REVIEW E69, 026127 ~2004!
cular regions and infinite regions cut along circular ar
Here we consider a crack in the shape of a circular arc
extends fromz5eiu to z5e2 iu. This crack is subjected to
remote uniaxial loadsxx5s` parallel to thex axis with
traction-free crack boundaries. The stress tensor compon
are calculated from Eq.~13! with @3#

w8~z!5
s`

2G~z! FC~u!@z2cos~u!#1
cos~u!

2z
2

1

2z2G
1s`F1

4
2

C~u!

2
2

1

4z2G ,

V~z!5
s`

2G~z! FC~u!@z2cos~u!#1
cos~u!

2z
2

1

2z2G
2s`F1

4
2

C~u!

2
2

1

4z2G , ~43!

c8~z!5
w8~z!

z2
2

V̄~1/z!

z2
2

w9~z!

z
.

Here

C~u!5
12sin2~u/2!cos2~u/2!

2@11sin2~u/2!#
,

G~z!5Az222z cos~u!11, ~44!

where G(z) is defined such thatz21G(z)→1 as z→`,
which leads toG(0)521. Note that these results are give
for an arc of unit radius and therefore the solution for a
other circular arc can be obtained by a suitable resca
transformation.

We applied our method for this configuration. The resu
for all three components of the stress tensor field foru

FIG. 3. The stress tensor components along the tangent to
crack tip. The crack is a semicircular arc of radius 200.r is the
distance away from the tip. The points show the numerical val
computed using bumps of linear sizeAl050.6 and the lines are the
corresponding analytical values.
02612
.
at

nts

y
g

s

5p/2 along the continuation of the tip parallel to thex axis
are presented in Fig. 3 and compared with the exact res

Finally, we used the method to extract the stress inten
factors. Figure 4 shows the mode I and mode II stress in
sity factors as a function of the half arc angleu and com-
pares them with the exact analytic result derived form
full field solution @4#.

V. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated that the method
iterated conformal maps can be used to construct the con
mal map from the exterior of the unit circle to the exterior
an arbitrary crack. We propose that this method is superio
the Schwartz-Cristoffel transformation; the latter necessa
approximates the crack by a polygonal shape. At every a
of the polygon one generates spurious singularities wh
numerical consequences are cumbersome and difficul
eliminate. In our method the only singularity is the physic
one near the tip of the crack. Having the conformal map o
can address the calculation of the stress field around su
crack with given loads at infinity. Having the said conform
map at hand simplifies enormously the calculation of the
stress field, allowing an accurate estimate of the stress in
sity factors or of the subleading terms like theT-stress. The
method was demonstrated by comparison with exa
soluble examples, leaving other~more realistic! examples for
future work. The quality of the comparison between the e
act solutions and our method leads to the conclusion that
issue of potential failure of a material given a crack a
boundary conditions can be efficiently dealt with. Futu
work will employ the present method to describe the dyna
ics of slow fracture where quasi-static methods are adequ
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FIG. 4. Stress intensity factors for circular arcs of angles 2u.
The points are the numerical values computed from fitting of
stress field along the tangent to the crack tip. The fitting funct
used is of the form Eq.~40!. In this calculationAl050.4, and the
fitting window is 5,r,30.
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