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Stress field around arbitrarily shaped cracks in two-dimensional elastic materials
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The calculation of the stress field around an arbitrarily shaped crack in an infinite two-dimensional elastic
medium is a mathematically daunting problem. With the exception of few exactly soluble crack shapes the
available results are based on either perturbative approaches or on combinations of analytic and numerical
techniques. We present here a general solution of this problem for any arbitrary crack. Along the way we
develop a method to compute the conformal map from the exterior of a circle to the exterior of a line of
arbitrary shape, offering it as a superior alternative to the classical Schwartz-Cristoffel transformation. Our
calculation results in an accurate estimate of the full stress field and in particular of the stress intensity factors
K, andK,, and theT-stress which are essential in the theory of fracture.
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[. INTRODUCTION simple. Their numerical value depends on the shape of the
crack, its dynamical history, and on the far field boundary
The existence of a crack in a stressed elastic medium doewnditions.

not necessarily mean that a catastrophic failure is in sight; For astraightcrack the stress intensity factors are known

otherwise many home owners would be in a constant state @xactly[3,4], i.e.,

panic. Indeed, one of the major objectives of the theory of

fracture mechanics is to predict when the existence of a crack K= cr;y\/w_a, K= afy\/ﬁ, (4)

would necessarily lead to the failure of materials. A crucial

ingredient of such a prediction is the determination of thewhere 21 is the crack length andﬁ is the uniform load at

state of deformation of a given material in the presence ofnfinity. The criterion for failure is then the famous Griffith-

the said crack under the effect of a given external loadinglrwin criterion [5],

This calculation is not available for arbitrarily shaped cracks

even in two-dimensional elastic media. To explain the diffi- K2+ K32

culty consider for a moment an existing crack in an infinite — - b )

two-dimensional medium. Under given load conditions the

displacement fieldu(r,t) is giving rise to the elastic strain \yherer is the fracture energy. The physical meaning of Eq.

tensore;; : (5) is that the crack will initiate(and may cause failuye
when the elastic energy flowing from the stress field in the
€ = E(ﬂ T %) (1) bulk to the tip region is at least as large as the energy lost by
o2\oxg o ax)” lengthening the crackbond breaking or any other energy

cost involved. In the case of the straight crack failure will
In linear elasticity the stress tensor is related to the straiyccur, for a given level of the external load, at a critical crack
tensor by[1] length.

For cracks of arbitrary shape we still expect both Egs.
and(5) to remain valid. The problem is then how to compute
the stress intensity factot§; andK,, when the crack isot
straight. Indeed, a well-known paper by Cotterell and Rice

whereE and v are the Young’s modulus and the Poisson's[6] offers such an analytic calculation forstightly curved

ratio, respectively. When the boundary conditions at infinitycrack in perturbation theory in the amount of deviation from
include both opening and shear modesth respect to the the straight crack. Many other works developed alternative
straight crackthe stress field near the tip of any crack has ahybrid numerical-analytical techniques like singular integral

E
TiT Ty

14

1_—2,/5”2'(: €kt €jj

: )

universal form[2], i.e., equations based either on dislocation distribution or crack

“opening displacement functions” and superposition meth-

K, K, ods[7]. A large body of research is devoted to direct numeri-
oij(r.e)=—=3(¢)+ SH(e). (3)  cal techniques like the finite element metH&d. In this pa-

N2 N2 per we offer a nonperturbative approach to the calculation of

the full stress field of an arbitrarily shaped crack based on a
Here K, andK,, are the “stress intensity factors” with re- conformal mapping technique. In particular, we will be able
spect to the opening and shear modes, whe¥qds) and  to estimate accurately the stress intensity factors and any
2”(@) are universal angular functions common to all con-other relevant quantities like th&stress, a quantity to be
figurations and loading conditions. Despite the simplicity ofdefined belowcf. Eq. (40)]. In Sec. Il we lay out the math-
Eq. (3) the calculation of the stress intensity factors is notematical problem. In Sec. Il we present a solution based on
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the method of iterated conforr_na[ maps. This section includes ayy(X.y) =R 2¢’ (2) +Zp”(z)+ 7' (2],

also the general problem of finding the conformal map from

the unit circle to a line of an arbitrary shape. The section o (%,y) =R 26’ (2) —Zp”(z)— 7'(2)]
XX ’ 1

culminates in the calculation of the stress intensity factors. In
Sec. IV we exemplify the method and compare it against

exactly soluble cases. Section V offers a short summary and Tey(%,y) =Im[z¢"(2) + 77(2)]. (13
a discussion. In order to compute the full stress field one should first for-
mulate the boundary conditions in terms of the analytic func-
Il. MATHEMATICAL FORMULATION tions ¢(z) andz(z) and to remove the gauge freedom in Eq.

. . . (12). The boundary conditions E¢L1), using Eq.7), can be
The theory of elastostatic fracture mechanics in brittle.q\\ritten ag3]

continuous media is based on the equilibrium equations for

an isotropic elastic bodjl] U  9uU
Jg &‘FIWZO. (14)
&O'ij
P 6) Note that we do not have enough boundary conditions to

: determineU(x,y) uniquely. In fact we can allow in Eq12)

For in-plane modes of fractures, i.e., under plane-stress @rbitrary transformations of the form

plane-strain conditions, one introduces the Airy stress poten- )

tial U(x,y) such that ¢—¢+iCzty,

52U 22U 22U b=ty =7, (15

Oxx= 5 Oxy=— 07_; Oyy="5- (7) . ~

ay Xady IX where C is a real constant angt and y are complex con-
stants. This provides five degrees of freedom in the definition

Thus the set of Eq6), after simple manipulations, translates of the Airy potential. Two of these freedoms are removed by

to a Bi-Laplace equation for the Airy stress potentiglx,y) choosing the gauge in EqL4) according to

[1]

ﬁU+_aU_O the bound 16
AAU(x,y)=0, (8) X IW_ , onthe boundary. (16)

with the prescribed boundary conditions on the crack and off IS important to stress that whatever the choice of the five
the external boundaries of the material. At this point weffeedoms, the stress tensor is unaffected;[8¢dor an ex-
choose to focus on the case of uniform remote loadings angaustive discussion of this point. Computing E46) in
traction-free crack boundaries. This choice, although not th&erms of Eq.(12) we arrive at the boundary condition

most general, is of great interest and will serve to elucidate — o o

our method. Other solutions may be obtained by superposi- ¢(2)+2¢'(2)+ (2)=0. (17

tion. Thus the bOUndary conditions at |nf|n|ty, for the two To proceed we represem(z) and l//(Z) in Laurent expan-
in-plane symmetry modes of fracture, are presented as  sjon form:

Ox(®)=0;  oyy(®)=0,; 0y(*°)=0 model, o(2)=@12+ o+ @_112+ @ _,17°+ - - -,

9
( ) IJ/(Z):I,/I]_Z'i‘ l/fo+ 1/1_1/Z+ IJ/_2/22+' RN (18)
ox(®)=0; 0y (°)=0; oy(*)=0, modell.

(10) This form is in agreement with the boundary conditions at
infinity that disallow higher order terms in One freedom is

In addition, the free boundary conditions on the crack ard!OW used to choose, to be real and two more freedoms

expressed as will allow us later on to fixegy. Then, using the boundary

conditions(9) and(10), we find

oyn(S)= Uyn(s) =0, (13) o 0.,
. L 90127; ¢1=7 mode |,
wheres s the arc-length parametrization of the crack bound-

ary and the subscript denotes the outward normal direction.
The solution of the Bi-Laplace equation can be written in
terms oftwo analytic functionse(z) and 5(z) as

©1=0; yy=ic,. modell. (19

Ill. THE SOLUTION

U(x,y)=Rdze(z)+ n(2)]. (12 As said above, the direct determination of the stress tensor
for a given arbitrarily shaped crack is difficult. To overcome
In terms of these two analytic functions, using K@), the  the difficulty we perform an intermediate step of determining
stress components are given by the conformal map from the exterior of the unit circle to the
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exterior of our given crack. Currently the best available ap-

proach for such a task is the Schwartz-Cristoffel transforma- z-plane
tion. Here we will present an alternative new approach for :
finding the wanted conformal transformation, given in terms
of a functional iteration of fundamental conformal maps. The
use of iterated conformal maps was pioneered by Hasting:
and Levitov[9]; it was subsequently turned into a powerful
tool for the study of fractal and fracture growth patterh8—

16]. In the next section we describe how, given a crack
shape, to construct a conformal map from the complex
plane to the physicat plane such that the conformal map
=®(w) maps the exterior of the unit circle in theplane to
the exterior of the crack in the physicalplane, aftem di-
rected growth steps. We draw the reader’s attention to the/ i
fact that this method is more general than its application in «-Plane - ;
this paper, and in fact we offer it as a superior method to the N :
Schwartz-Cristoffel transformation, with hitherto undeter- >
mined potential applications in a variety of two-dimensional i
contexts.

z—plane

w-plane

0o, 0,

A. The conformal mapping )
) o ) o FIG. 1. Example of how to construct the conformal mapping
The essential building block in the present application, asiong a line, see text for details.

in all the applications of the method of iterated conformal
maps, is the fundamental maf, , that maps, the exterior
circle onto the unit circle with a semicircular bump of linear
size \A which is centered at the poirt’. This map reads

gn=arg[ x"""V(2)]. (24)

The magnitude of the bump,, is determined by requiring

9] fixed size bumps in the plane. This means that
1+
Bon (W)= 1] ) (1) 1w _ No
2w M= (25)
|q)(n—l)/(e|0n)|2
1 21—\ 1/2 1/2
Twl 1+ —-— TSN —1; , (200 We note here that it is not necessary in principle to have
w fixed size bumps in the physical domain. In fact, adaptive
Y _io size bumps could lead to improvements in the precision and
Do (W) =€, (e "W). (22) performance of our scheme. We consider here the fixed size
The inverse mapping;.L,, is of the form scheme for the sake of simplicity, and we will show that the
PPING =0, accuracy obtained is sufficient for our purposes. Iterating the
v scheme described above we end up with a conformal map
652)\2 1A =z"-1) 7. (22) that is written in terms of an iteration over the fundamental

1—(1+N)Z2

By composing this map with itseli times with a judicious
choice of series{6,}y—, and {\,Jn_; we will construct

maps(20):

DO (W)= by, 5,0 -0 B, 2, (W) (26)

®(M(w) that will map the exterior of the circle to the exte- For the sake of newcomers to the art of iterated conformal
rior of an arbitrary simply connected shape. To understan¢éhaps we stress that this iterative structure is abnormal, in the

how to choose the two seri¢#,}._, and{\};_, consider
Fig. 1, and define the inverse map= x("(z). Assume now

that we already havé (" Y)(w) and therefore also its ana-
lytic inversex("~)(z) aftern— 1 growth steps, and we want

to perform the next iteration. To construd™(w) we ad-
vance our mapping in the direction of a pomin the z plane
by adding a bump in the direction @f= y("~)(2) in thew
plane. The magh("(w) is obtained as follows:

DM (w)=0" V[, , (0)]. (23

The value ofé, is determined by

sense that the order of iterates is inverted with respect to
standard dynamical systems. On the other hand the inverse
mapping follows a standard iterative scheme
XV(@)=¢, '\ oo dyty (2). (27)
The algorithm is then described as follows; first we divide
the curve into segments separated by pajmfs The spatial
extent of each segment is taken to be approxima@ly, in
order to match the size of the bumps in thplane. Without

loss of generality we can take one of these points to be at the
center of coordinates and to be our starting point. From the
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starting point we now advance along the shape by mapping
the next pointz; on the curve according to the scheme de-
scribed above.

PHYSICAL REVIEW E59, 026127 (2004

fle=2 fie' (35

In the discussion below we assume that the coefficibnts

B. Solution in terms of conformal mappings

The conformal mapb("(w) is constructed im iterative
steps. For the discussion below we do not needntkaper-
script and will denote simplyp (w)=®"(w). This map is
univalent[10], having the Laurent expansion form

andf; are known. In order to compute these coefficients we

need to Fourier transform the functidn(e)/®’(e). This is

the most expensive step in our solution. One needs to care-
fully evaluate the Fourier integrals between the branch cuts.
Using the last two equations together with E(@l) and(32)

we obtain
®(w)=Fiw+Fo+F_j/o+F_,/0?>+---. (28
Any position z in the physical domain is mapped by(z) _m— 2 kbfmfkflz’tk:ffma m=1.2,..., (36
k=1

=® Y(2) onto a positionw in the mathematical domain.
This transformation does not immediately provide the solu-
tion, as the Bi-Laplacian operator, in contrast to the Laplac-
ian operator, is not conformally invariant. Nevertheless, the
conformal mapping method can be extended to non-
Laplacian problems. We begin by writing our unknown func-
tions ¢(z) and (z) in terms of the conformal map
W)=yl x(2)]. (29)
Using the Laurent form of the conformal map, E8), the
linear term asw— is determined by Eq929). We there-
fore write

e(2)=¢[x(2)],

;(w):¢1F1w+’(}71/(v+¢72/w2+ cee

W w)=Fro+dotP_1lo+d_ o+ -, (30

where we used the last two freedoms to choosg

= —Fy¢; such thatp,=0. The boundary conditiofl7) is
now read for the unit circle in thes plane. Denotinge
=e'’ and

ue)=2 ¢ /e, vie)=2 ¥ /€, (31
k=1 k=0

we write

D(e)

u(e)+ u'(e)+uv(e)="1(e). (32

(€

The functionf(e€) is a known function that contains all the
coefficients that were determined so far:

D(e) Uy
=1 F1— .

D'(e)

f(e)=—¢iFe- (33

To solve the problem we need to compute the coefficigqts
and i, . To this aim we first writg15]

(e)

(34

z biEi.

P’ (e€)

The functionf(e) has also an expansion of the form

T//tm—k; Kby_x_10* =fm, mM=012.... (37

These sets of linear equations are well posed. The coeffi-
cientsp_,, can be calculated from E36) alone, and then

they can be used to determine the coefficights,. This is
in fact a proof that Eq(32) determines the functions(e)
and v(e) together. This fact had been proven with some
generality in[3].

The calculation of the Laurent expansion form @fw)

and y(w) provides the solution of the problem in the
plane. Still, one should express the derivativesp¢f) and

7(2) in terms of () andJ(w) and the inverse map(z)
to obtain the solution in the physicaplane. This is straight-
forward and yields

¢ (2)=9'[x(2)1x'(2),
¢"(2)=¢"Ix(21x" (212+¢'[x(2]1x"(2),

7' (D=4 (2)=¢'[x(2)]x'(2). (38)
Upon substituting these relations into EG3) one can cal-
culate thefull stress field for an arbitrarily shaped crack. The
expression of the stress field in terms of the inverse confor-
mal mapping is known for quite a long time although it is
very limited as the conformal mapping and its inverse is
rarely at hand. The central step of progress in this paper is
the conjunction of the novel functional iterative scheme for
obtaining the inverse conformal mapping with the known
result that expresses the stress field in terms of this inverse

mapping.

C. The stress intensity factors and the T-stress

Linear elasticity fracture mechanics, under small scale
yielding, has no intrinsic length scale. Accordingly the stress
intensity factors are the most important quantities that char-
acterize the universal near-tip fields. At this point we explain
how to calculate the stress intensity factors from our solu-
tion.

In principle, the calculation follows directly from the so-
lution in terms of the conformal map as described above.
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Previous authors derived the following expression for the e
complex combinationof the real stress intensity factors 1 8
[17]: | £
o | 82
T ~ 1 L=
i — ' X > A
K=K, =2 \l—eiéjq),,(wj)@ (wj), (39 1 38 e
& © - o 5 10 15 20

where w; is the position of the tip in th@ plane, ands; is . P
the argument of the tip positiaz) in the physical plane. This 1
result, although exact, cannot be used to obtain accurate es-

. . : ; ; <
timates of the stress intensity factors in our method. Since we i
construct our crack from a succession of little bumps, our .
crack tip is not infinitely sharp. Therefore we cannot base our 1

(aV} T

—
10

15

calculation of the stress intensity factors on the precise coor-
dinates of the tip. Rather, we need to exploit our knowledge 0 5
of the stress field for a substantial region around the tip. We
thus consider the stress field in the region of the tip, and
write the components along the tangent to the crack at the tip FIG. 2. The stress tensor componery, for a straight crack

20

[2]

— K' \/—
aw(r,O)—E%—bw r,

with a=200. The component is evaluated for 0 and a distancp
away from the tip atx=200. The numerical estimatéfssyy ap-
proaches the analytical resiihe left most ling as we decrease the
linear size of the bumps(xo=1.0,0.9,0.8. ..,0.3. The inset shows
the relative error.

2

z iya

+
_a2 (22_a2)3/2

K
O-Hp(rio): L—Fbr(p\/F;

N2

2

oy(Xy)=0" Re{

YA
o (r,0)= al +T+by T (40) . z iya? .
T 2 ! TolXY) =0 Re e | (4D

We have added terms @ (+/r) to the leading terms, and in
addition we took into account thEestress contribution to the
purely radial componend,, . It is crucial to note that there
are no othe©(1) terms in the first two lines of E¢40). We
did not need to consider explicitly any high@(r®?) terms.  wherez=x+iy and the crack is represented by a branch cut
In order to extract the stress intensity factors from the fullalong —a<x<a, y=0.

field distributions we fit our solution near the tip to the form  We applied our general solution to the straight crack prob-
given by Eq.(40). We thus obtain not only the stress inten- lem. We constructed the conformal mapping using our func-
sity factors but also the coefficient of the subleading termstional iteration scheme although the exact conformal map-
We note that the so-calletstress has an important role in ping is known to be

fracture theory(cf. [2,4,6]).

ya®

(22_ a2)3/2

Oyy(X,y)=—0" Re{

1
w+ —
w

a
D(w)==

. (42
IV. DEMONSTRATIONS OF THE METHOD 2

In this section we demonstrate our method for t@bthe  Figure 2 compares our calculation of,, along thex axis
very rarg exactly soluble geometries. There are many nu-with the exact result. The deviation near the tip of the crack
merically solved problems in the literature that one can usés expected as in our solution the crack tip is not infinitely
for comparison, but our aim here is to exemplify the essensharp but has a finite radius of curvature controlled by the
tials of our approach. We will see that the method works vernyparamete in Eq. (20). Decreasing the value of, we can
well and we propose that it can be used for arbitrary craclobtain more accurate results. Note that real crack tips
shapes as well. have a finite radius of curvature, so that our method can be
even more appropriate; the idealization of representing
cracks by mathematical branch cuts is no longer a necessary
simplification.

A. The straight crack

The problem of a crack of lengthe2in an infinite domain,
subjected to a remote uniaxial load,,=oc™ and traction-
free crack faces, is considered as the canonical problem in
the theory of linear elasticity fracture mechanics. The result- The analytic methods developed by Muskhelish{/8i
ing stress field is known, and is given P4/ lead to the solution of various problems concerned with cir-

B. The circular arc crack
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Stress Field
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FIG. 3. The stress tensor components along the tangent to the
crack tip. The crack is a semicircular arc of radius 2p0s the
distance away from the tip. The points show the numerical value
computed using bumps of linear siz@&,=0.6 and the lines are the
corresponding analytical values.

FIG. 4. Stress intensity factors for circular arcs of angl®s 2
;I'he points are the numerical values computed from fitting of the
stress field along the tangent to the crack tip. The fitting function
used is of the form Eq40). In this calculationyA,=0.4, and the
fitting window is 5< p<30.

cular regions and infinite regions cut along circular arcs._ 5 along the continuation of the tip parallel to thexis

Here we consider a crack in the shape of a circular arc thac'ire presented in Fig. 3 and compared with the exact results.

il 1 il Thi : :

extends frome=e'" to =e This crack is subjected to @ Fjpa)ly we used the method to extract the stress intensity
remote uniaxial loado,=o" parallel to thex axis with  actors. Figure 4 shows the mode | and mode Il stress inten-
traction-free crack boundaries. The stress tensor componen{gy factors as a function of the half arc angleand com-

are calculated from Eq(13) with [3] pares them with the exact analytic result derived form the

o, cogd) 1 full field solution [4].
¢'(2)= C(0)[z—cod0)]+ -5
2G(2) 2z 272 V. SUMMARY AND CONCLUSIONS
1 CH 1 In summary, we have demonstrated that the method of
+ 0. 172 Tl iterated conformal maps can be used to construct the confor-
4z mal map from the exterior of the unit circle to the exterior of
p 1 an arbitrary crack. We propose that this method is superior to
Q(z)= T C(0)[z—cod )]+ cog ) _ = the Schwartz-Cristoffel transformation; the latter necessarily
2G(2) 2z 272 approximates the crack by a polygonal shape. At every apex
of the polygon one generates spurious singularities whose
1 Co 1 numerical consequences are cumbersome and difficult to
TO0x T T T E ' (43 eliminate. In our method the only singularity is the physical
one near the tip of the crack. Having the conformal map one
¢'(2) 5(1/2) ¢"(2) can address the calculation of the stress field around such a
Y (z2)= R E—— crack with given loads at infinity. Having the said conformal
z z map at hand simplifies enormously the calculation of the full
stress field, allowing an accurate estimate of the stress inten-
Here sity factors or of the subleading terms like thestress. The
1—sir?(8/2)co( 6/2) method was demonstrated by comparison with exactly
C(o)= 2 soluble examples, leaving oth@nore realisti¢ examples for
2[1+sin(6/2)] future work. The quality of the comparison between the ex-
G(z)=\ZZ—2zco96) + 1 (44) act solutions and our method leads to the conclusion that the

issue of potential failure of a material given a crack and
boundary conditions can be efficiently dealt with. Future
work will employ the present method to describe the dynam-

ics of slow fracture where quasi-static methods are adequate.

where G(z) is defined such that 'G(z)—1 as z—ox,
which leads toG(0)= —1. Note that these results are given
for an arc of unit radius and therefore the solution for any
other circular arc can be obtained by a suitable rescaling
transformation.

We applied our method for this configuration. The results This work was supported in part by the European
for all three components of the stress tensor field for Commission under a TMR grant.
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